久久国产亚洲欧美日韩精品,国产精品一区在线麻豆,国产拍揄自揄精品视频网站,欧美日本一区二区三区免费,无码福利视频,亚洲无码视频喷水,亚洲三级色,亚洲狠狠婷婷综合久久久久

函數奇偶性課件

2021-04-08 課件

  函數的奇偶性是指在關于原點的對稱點的函數值相等。函數奇偶性課件內容,一起來看看!

  課標分析

  函數的奇偶性是函數的重要性質,是對函數概念的深化.它把自變量取相反數時函數值間的關系定量地聯系在一起,反映在圖像上為:偶函數的圖像關于y軸對稱,奇函數的圖像關于坐標原點成中心對稱.這樣,就從數、形兩個角度對函數的奇偶性進行了定量和定性的分析.

  教材分析

  教材首先通過對具體函數的圖像及函數值對應表歸納和抽象,概括出了函數奇偶性的準確定義.然后,為深化對概念的理解,舉出了奇函數、偶函數、既是奇函數又是偶函數的函數和非奇非偶函數的實例.最后,為加強前后聯系,從各個角度研究函數的性質,講清了奇偶性和單調性的聯系.這節課的重點是函數奇偶性的定義,難點是根據定義判斷函數的奇偶性.

  教學目標

  1 通過具體函數,讓學生經歷奇函數、偶函數定義的討論,體驗數學概念的建立過程,培養其抽象的概括能力.

  教學重難點

  1理解、掌握函數奇偶性的定義,奇函數和偶函數圖像的特征,并能初步應用定義判斷一些簡單函數的奇偶性.

  2 在經歷概念形成的過程中,培養學生歸納、抽象概括能力,體驗數學既是抽象的又是具體的.

  學生分析

  這節內容學生在初中雖沒學過,但已經學習過具有奇偶性的具體的函數:正比例函數y=kx,反比例函數 ,(k≠0),二次函數y=ax2,(a≠0),故可在此基礎上,引入奇、偶函數的概念,以便于學生理解.在引入概念時始終結合具體函數的圖像,以增加直觀性,這樣更符合學生的認知規律,同時為闡述奇、偶函數的.幾何特征埋下了伏筆.對于概念可從代數特征與幾何特征兩個角度去分析,讓學生理解:奇函數、偶函數的定義域是關于原點對稱的非空數集;對于在有定義的奇函數y=f(x),一定有f(0)=0;既是奇函數,又是偶函數的函數有f(x)=0,x∈R.在此基礎上,讓學生了解:奇函數、偶函數的矛盾概念———非奇非偶函數.關于單調性與奇偶性關系,引導學生拓展延伸,可以取得理想效果.

  教學過程

  一、探究導入

  1 觀察如下兩圖,思考并討論以下問題:

  (1)這兩個函數圖像有什么共同特征?

  (2)相應的兩個函數值對應表是如何體現這些特征的?

  可以看到兩個函數的圖像都關于y軸對稱.從函數值對應表可以看到,當自變量x取一對相反數時,相應的兩個函數值相同.

  對于函數f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實上,對于R內任意的一個x,都有f(-x)=(-x)2=x2=f(x).此時,稱函數y=x2為偶函數.

  2觀察函數f(x)=x和f(x)= 的圖像,并完成下面的兩個函數值對應表,然后說出這兩個函數有什么共同特征.

  可以看到兩個函數的圖像都關于原點對稱.函數圖像的這個特征,反映在解析式上就是:當自變量x取一對相反數時,相應的函數值f(x)也是一對相反數,即對任一x∈R都有f(-x)=-f(x).此時,稱函數y=f(x)為奇函數.

  二、師生互動

  由上面的分析討論引導學生建立奇函數、偶函數的定義

  1 奇、偶函數的定義

  如果對于函數f(x)的定義域內任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫作奇函數.

  如果對于函數f(x)的定義域內任意一個x,都有f(-x)=f(x),那么函數f(x)就叫作偶函數.

  2 提出問題,組織學生討論

  (1)如果定義在R上的函數f(x)滿足f(-2)=f(2),那么f(x)是偶函數嗎?

  (f(x)不一定是偶函數)

  (2)奇、偶函數的圖像有什么特征?

  (奇、偶函數的圖像分別關于原點、y軸對稱)

  (3)奇、偶函數的定義域有什么特征?

  (奇、偶函數的定義域關于原點對稱)

  三、難點突破

  例題講解

  1 判斷下列函數的奇偶性.

  注:①規范解題格式;②對于(5)要注意定義域x∈(-1,1〕.

  2 已知:定義在R上的函數f(x)是奇函數,當x>0時,f(x)=x(1+x),求f(x)的表達式.

  解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),

  而f(x)是奇函數,∴f(-x)=-f(x).∴f(x)=x(1-x).

  (2)當x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

  3 已知:函數f(x)是偶函數,且在(-∞,0)上是減函數,判斷f(x)在(0,+∞)上是增函數,還是減函數,并證明你的結論.

  解:先結合圖像特征:偶函數的圖像關于y軸對稱,猜想f(x)在(0,+∞)上是增函數,證明如下:

  任取x1>x2>0,則-x1<-x2<0.

  ∵f(x)在(-∞,0)上是減函數,∴f(-x1)>f(-x2).

  又f(x)是偶函數,∴f(x1)>f(x2).

  ∴f(x)在(0,+∞)上是增函數.

  思考:奇函數或偶函數在關于原點對稱的兩個區間上的單調性有何關系?

  鞏固創新

  1 已知:函數f(x)是奇函數,在〔a,b〕上是增函數(b>a>0),問f(x)在〔-b,-a〕上的單調性如何.

  2 f(x)=-x|x|的大致圖像可能是(  )

  3 函數f(x)=ax2+bx+c,(a,b,c∈R),當a,b,c滿足什么條件時,(1)函數f(x)是偶函數.(2)函數f(x)是奇函數.

  4 設f(x),g(x)分別是R上的奇函數和偶函數,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

  四、課后拓展

  1 有既是奇函數,又是偶函數的函數嗎?若有,有多少個?

  2 設f(x),g(x)分別是R上的奇函數,偶函數,試研究:

  (1)F(x)=f(x)·g(x)的奇偶性.

  (2)G(x)=|f(x)|+g(x)的奇偶性.

  3已知a∈R,f(x)=a- ,試確定a的值,使f(x)是奇函數.

  4 一個定義在R上的函數,是否都可以表示為一個奇函數與一個偶函數的和的形式?

  教學后記

  這篇案例設計由淺入深,由具體的函數圖像及對應值表,抽象概括出了奇、偶函數的定義,符合職高學生的認知規律,有利于學生理解和掌握.應用深化的設計層層遞進,深化了學生對奇、偶函數概念的理解和應用.拓展延伸為學生思維能力、創新能力的培養提供了平臺。

【函數奇偶性課件】相關文章:

《集合與函數》課件設計05-08

《對數函數》課件設計05-08

二次函數超級經典課件教案05-13

一次函數的教學設計課件02-17

奇函數的反函數是奇函數嗎10-12

函數與反函數關于什么對稱10-12

常數函數是周期函數嗎?10-12

奇函數乘奇函數等于什么10-12

“數的奇偶性”教學設計(6篇)04-05

冪函數教案04-07

主站蜘蛛池模板: 91麻豆精品国产91久久久久| 日本高清在线看免费观看| 国产草草影院18成年视频| 国产成人免费| 国产精品观看视频免费完整版| 亚洲成年人网| 欧美成人一级| 久久女人网| 国产欧美日韩精品综合在线| 精品视频第一页| 国产丝袜第一页| 无码综合天天久久综合网| 五月天久久综合国产一区二区| 国产美女免费| 欧美一区二区人人喊爽| 亚洲一区二区三区国产精华液| 国产精品欧美亚洲韩国日本不卡| 国内熟女少妇一线天| 国产一区二区三区免费观看| 精品国产污污免费网站| 色丁丁毛片在线观看| 国产精品白浆无码流出在线看| 91蝌蚪视频在线观看| 亚洲制服丝袜第一页| 欧美午夜在线观看| 福利在线免费视频| 手机看片1024久久精品你懂的| 国产又爽又黄无遮挡免费观看| 国产极品美女在线| 欧美在线观看不卡| 真实国产乱子伦视频| 中文国产成人精品久久| 九九精品在线观看| 亚洲性一区| 中国国产高清免费AV片| 亚洲第一色网站| 国产在线精品99一区不卡| 欧美一区二区自偷自拍视频| 亚洲欧美极品| 日韩麻豆小视频| 日韩成人在线视频| 欧美日韩理论| 国产在线精彩视频二区| 91久久天天躁狠狠躁夜夜| 国产经典免费播放视频| 色综合五月婷婷| 婷婷六月激情综合一区| 一本大道无码高清| 香蕉网久久| 婷婷在线网站| 欧美视频在线播放观看免费福利资源| 国产一级毛片在线| 国产精品亚洲va在线观看| 亚洲国产日韩一区| 国产成人一区免费观看| 91啪在线| 亚洲精品桃花岛av在线| 制服丝袜一区| 在线精品自拍| 国产99在线| 色吊丝av中文字幕| 黑色丝袜高跟国产在线91| 国内精品小视频在线| 99re66精品视频在线观看| 欧美午夜视频| 色噜噜狠狠色综合网图区| 午夜福利免费视频| 妇女自拍偷自拍亚洲精品| 99无码熟妇丰满人妻啪啪 | 亚洲视频四区| 国产在线视频欧美亚综合| 精品欧美一区二区三区在线| 毛片在线看网站| 国产精彩视频在线观看| 激情六月丁香婷婷四房播| 亚洲国产日韩一区| 特级欧美视频aaaaaa| 精品91自产拍在线| 亚洲一道AV无码午夜福利| 国产欧美日韩在线一区| 欧美一区精品| 色噜噜在线观看|